Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
RSC Adv ; 13(49): 34693-34702, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38035252

RESUMO

With increased efficiency, simplicity in manufacturing, adaptability, and flexibility, solar cells constructed from organic metal halide perovskite (PVK) have recently attained great eminence. Lead, a poisonous substance, present in a conventional PVK impacts the environment and prevents commercialization. To deal with this issue, a number of toxicity-free PVK-constructed solar cells have been suggested. Nevertheless, inherent losses mean the efficiency conversion accomplished from these devices is inadequate. Therefore, a thorough theoretical investigation is indispensable for comprehending the losses to improve efficiency. The findings of a unique modelling method for organic lead-free solar cells, namely methylammonium tin iodide (MASnI3), are investigated to reach the maximum practical efficiencies. The layer pertinent to MASnI3 was constructed as a sandwich between a bio-synthesized electron transport layer (ETL) of CeO2 and a hole transport layer (HTL) of CuCrO2 in the designed perovskite solar cells (PSCs). In this study, the use of algae-synthesized Au in the back contacts has been proposed. To obtain the maximum performance, the devices are further analyzed and optimized for active layer thickness, working temperature, total and interface defect density analysis, impedance analysis (Z'-Z), and capacitance-voltage (C-V), respectively. An optimal conversion efficiency of 26.60% has been attained for an MASnI3-constructed PSC. The study findings may open the door to a lead-free PSC through improved conversion efficiencies.

2.
Environ Sci Pollut Res Int ; 25(33): 33508-33520, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30267347

RESUMO

Two dominant cyanobacterial species, Phormidium lucidum and Oscillatoria subbrevis, isolated from submerged polyethylene carry bags in domestic sewage water were found to be capable of degrading low-density polyethylene (LDPE) sheets efficiently. The FT-IR, SEM, NMR, CHN content, thermal, and tensile strength of PE were monitored for structural, morphological, and chemical changes of PE. The CHN analysis corroborated about 4% carbon utilization by the cyanobacterial species from the PE. The rapid growth of cyanobacterial species on the PE surface suggested that the microorganisms continued to gain energy from the PE. The reduction in lamellar thickness, weight, and crystallinity of the cyanobacterial-treated PE pointed to an efficient biodegradation process without any pro-oxidant additives or pretreatment. Alteration in bond indices computed from FT-IR spectroscopy revealed changes in functional group and side chain features indicating biodegradation. The enhanced laccase and manganese peroxidase activity corroborated the biodegradation. The 13C-NMR spectroscopy of the PE is consistent with short branching providing further evidence of biodegradation. Scanning electron microscopy and optical microscopy exhibited large grooves on the surface suggesting significant disruption of polyethylene structure.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Poluentes Ambientais/análise , Polietileno/análise , Esgotos/microbiologia , Biodegradação Ambiental , Modelos Teóricos , Propriedades de Superfície , Gerenciamento de Resíduos/métodos
3.
Appl Microbiol Biotechnol ; 102(8): 3635-3647, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29520599

RESUMO

Exopolysaccaharides (EPS) are carbohydrate polymers secreted by microbial cells, as a protective layer termed sheath or capsule. Their composition is variable. Optimisation of nutrient factors and the effect of some simple stresses on the ability of Cyanothece epiphytica to produce EPS were tested. Of the tested stresses, exposure to ozone for 50 s at 0.06 mg/L resulted in a relatively high EPS yield, without any damage to cell structure. EPS was characterised physicochemically. Chemically, it was found to be composed of pentoses arabinose and xylose; hexoses glucose, galactose and mannose; and the deoxyhexose fucose sugars which were sulphated and with different functional groups. EPS from C. epiphytica was found to be a good hydrophobic dispersant, an excellent emulsifier as well as a flocculant. Its potential as a biolubricant with characteristics better than the conventional lubricant 'grease' was revealed through analysis. This study gave the clue for developing a commercial technology to produce a less expensive and more environment-friendly natural lubricant from the cyanobacterium C. epiphytica for tribological applications.


Assuntos
Cyanothece/química , Microbiologia Industrial , Lubrificantes/química , Polissacarídeos Bacterianos/biossíntese , Lubrificantes/normas , Pentoses/química , Polissacarídeos Bacterianos/química
4.
Biol Res ; 47: 24, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25026869

RESUMO

BACKGROUND: Unstable generation of free radicals in the body are responsible for many degenerative diseases. A bloom forming algae Euglena tuba growing abundantly in the aquatic habitats of Cachar district in the state of Assam in North-East India was analysed for its phytochemical contents, antioxidant activity as well as free radical scavenging potentials. RESULTS: Based on the ability of the extract in ABTS•+ radical cation inhibition and Fe3+ reducing power, the obtained results revealed the prominent antioxidant activity of the algae, with high correlation coefficient of its TEAC values to the respective phenolic and flavonoid contents. The extract had shown its scavenging activity for different free radicals and 41.89 ± 0.41 µg/ml, 5.83 ± 0.07 µg/ml, 278.46 ± 15.02 µg/ml and 223.25 ± 4.19 µg/ml were determined as the IC50 values for hydroxyl, superoxide, nitric oxide and hypochlorous acid respectively, which are lower than that of the corresponding reference standards. The phytochemical analysis also revealed that the phenolics, flavonoids, alkaloids, tannins and carbohydrates are present in adequate amount in the extract which was confirmed by HPLC analysis. CONCLUSIONS: The results showed that 70% methanol extract of the algae possesses excellent antioxidant and free radical scavenging properties.


Assuntos
Antioxidantes/metabolismo , Extratos Celulares/química , Euglena/química , Sequestradores de Radicais Livres/metabolismo , Substâncias Redutoras/metabolismo , Alcaloides/análise , Animais , Ácido Ascórbico/análise , Cromanos/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Glucose/análise , Índia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Metanol , Camundongos , Microalgas , Oxirredução , Fenóis/análise , Taninos/análise
5.
Bioprocess Biosyst Eng ; 37(12): 2559-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24942533

RESUMO

Biosynthesis of gold nanoparticles has been accomplished via reduction of an aqueous chloroauric acid solution with the dried biomass of an edible freshwater epilithic red alga, Lemanea fluviatilis (L.) C.Ag., as both reductant and stabilizer. The synthesized nanoparticles were characterized by UV-visible, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and dynamic light scattering (DLS) studies. The UV-visible spectrum of the synthesized gold nanoparticles showed the surface plasmon resonance (SPR) at around 530 nm. The powder XRD pattern furnished evidence for the formation of face-centered cubic structure of gold having average crystallite size 5.9 nm. The TEM images showed the nanoparticles to be polydispersed, nearly spherical in shape and have sizes in the range 5-15 nm. The photoluminescence spectrum of the gold nanoparticles excited at 300 nm showed blue emission at around 440 nm. Gold nanoparticles loaded within the biomatrix studied using a modified 2,2-diphenyl-1-picrylhydrazyl (DPPH) method exhibited pronounced antioxidant activity.


Assuntos
Antioxidantes/química , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Rodófitas/metabolismo , Biotecnologia/métodos , Água Doce , Química Verde , Luz , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Pós , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Biol. Res ; 47: 1-11, 2014. graf, tab
Artigo em Inglês | LILACS | ID: biblio-950720

RESUMO

BACKGROUND: Unstable generation of free radicals in the body are responsible for many degenerative diseases. A bloom forming algae Euglena tuba growing abundantly in the aquatic habitats of Cachar district in the state of Assam in North-East India was analysed for its phytochemical contents, antioxidant activity as well as free radical scavenging potentials. RESULTS: Based on the ability of the extract in ABTS•+ radical cation inhibition and Fe3+ reducing power, the obtained results revealed the prominent antioxidant activity of the algae, with high correlation coefficient of its TEAC values to the respective phenolic and flavonoid contents. The extract had shown its scavenging activity for different free radicals and 41.89 ± 0.41 µg/ml, 5.83 ± 0.07 µg/ml, 278.46 ± 15.02 µg/ml and 223.25 ± 4.19 µg/ml were determined as the IC50 values for hydroxyl, superoxide, nitric oxide and hypochlorous acid respectively, which are lower than that of the corresponding reference standards. The phytochemical analysis also revealed that the phenolics, flavonoids, alkaloids, tannins and carbohydrates are present in adequate amount in the extract which was confirmed by HPLC analysis. CONCLUSIONS: The results showed that 70% methanol extract of the algae possesses excellent antioxidant and free radical scavenging properties.


Assuntos
Animais , Masculino , Camundongos , Extratos Celulares/química , Sequestradores de Radicais Livres/metabolismo , Substâncias Redutoras/metabolismo , Euglena/química , Antioxidantes/metabolismo , Oxirredução , Fenóis/análise , Ácido Ascórbico/análise , Taninos/análise , Flavonoides/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Cromanos/metabolismo , Cromatografia Líquida de Alta Pressão , Metanol , Alcaloides/análise , Microalgas , Glucose/análise , Índia
7.
PLoS One ; 8(12): e82293, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358166

RESUMO

This report highlights the phytochemical analysis, antioxidant potential and anticancer activity against breast carcinoma of 70% methanolic extract of lichen, Parmotrema reticulatum (PRME). Phytochemical analysis of PRME confirms the presence of various phytoconstituents like alkaloids, carbohydrates, flavonoids, glycosides, phenols, saponins, tannins, anthraquinones, and ascorbic acid; among which alkaloids, phenols and flavonoids are found in abundant amount. High performance liquid chromatography (HPLC) analysis of PRME revealed the presence of catechin, purpurin, tannic acid and reserpine. Antioxidant activity was evaluated by nine separate methods. PRME showed excellent hydroxyl and hypochlorous radical scavenging as well as moderate DPPH, superoxide, singlet oxygen, nitric oxide and peroxynitrite scavenging activity. Cytotoxicity of PRME was tested against breast carcinoma (MCF-7), lung carcinoma (A549) and normal lung fibroblast (WI-38) using WST-1 method. PRME was found cytotoxic against MCF-7 cells with an IC50 value 130.03 ± 3.11 µg/ml while negligible cytotoxicity was observed on A549 and WI-38 cells. Further flow cytometric study showed that PRME halted the MCF-7 cells in S and G2/M phases and induces apoptosis in dose as well as time dependent manner. Cell cycle arrest was associated with downregulation of cyclin B1, Cdk-2 and Cdc25C as well as slight decrease in the expression of Cdk-1 and cyclin A1 with subsequent upregulation of p53 and p21. Moreover PRME induced Bax and inhibited Bcl-2 expression, which results in increasing Bax/Bcl-2 ratio and activation of caspase cascade. This ultimately leads to PARP degradation and induces apoptosis in MCF-7 cells. It can be hypothesised from the current study that the antioxidant and anticancer potential of the PRME may reside in the phytoconstitutents present in it and therefore, PRME may be used as a possible source of natural antioxidant that may be developed to an anticancer agent.


Assuntos
Adenocarcinoma/patologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Líquens , Extratos Vegetais/farmacologia , Adenocarcinoma/metabolismo , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...